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distance k/h. This technique has the advantage of giving the 

correct result for large Fqurier numbers, since for large 1, 
Fourier numbers the first eigenvalue plays the dominant 

role in the temperature distribution. 2. 
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NOMENCLATURE 

At,, Ai,, B,, B,, constants; 

C,i, specific heat at constant pressure in the ith 

section ; 
DZ, 
4”. 
i, j, k, 
J 
K:: 

thermal diffusivity in the ith section: 

constant; 

integers: 

zero order Bessel function of the first kind; 

thermal conductivity in the ith section; 

KjA(x, t), Kj,(x, t), Kjc(x, t), functions of space and time, 

defined by equations (17H19); 

M,,, Ni,, derived eigenfunction terms (dimensionless); 

Qi, distributed ‘source in the ith section; 

r, time ; 
T(x, 0. temperature in the ith section; 

X,(x), eigenfunction (dimensionless) ; 
X, spatial coordinate; 

Y 0, zero order Bessel function of the second kind ; 

Y.. eigenvalue ; 
Pi. density in the ith section. 

probes is not available has led logically to a program of 

indirect experimental measurements. The use of proper 

analytical techniques, along with indirect experimental data, 

allows the determination of the desired information at 

locations inaccessible directly by experimental probes. 

In this type of problem one seeks the transient boundary 

conditions given the initial and some time-dependent 

conditions in the interior of the media. This is called an 

inverse problem or an interior value problem in contrast to 

a boundary value problem. 

At present, the only technique for the solution of the 

inverse problem in composite media is a numerical method 

proposed by Beck [ 11. Mulholland and San Martin [2] 

used the results of a known exact solution to obtain the 

internal and external temperature history of a composite. 
The objective of this paper is to present an analytical method 

which builds on the ideas presented in [2] for treating such 

problems in composite materials composed of k solidly 

joined plates. cylinders or spheres. 

INTRODUCTION 

THE PROBLEMS associated with obtaining direct experimental 
data in extreme environments and when space for data 

STATEMENT OF PROBLEM 

The heat conduction equation for the ith section of k 

solidly joined plates, cylinders or spheres is 
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(1) 

xi < x < xi+1 

where Qi(x, t) is the rate of internal heat generation in the 

ith section. 

The boundary, internal and initial conditions for the 

composite are 

(4 

(b) 

(cl 

(4 

Cd 

T,(x,. t) = T,(t) 

Tsx,+,. 0 = T,(t) 

T(x, 0) = K(x), xi < x < xi+ ,, i = 1.2.. _, k 

T&+ ,r 0 = T+1(Xi+,, t) 

Ki 
mxi. I,0 
___ = Ki+, 

a+l(xi+,>d 

ax aX 

(2) 

where the functions T,(t) and 7”(t) are unknown functions 

of time which are to be determined from known internal 

conditions. 

SOLUTION 

The solution to equations (1) and (2) has been obtained for 

a rectangular. cylindrical and spherical coordinate system 

[2,3] and is given by 

qx,t)= f {g,exp(-y,2t) + iqn(r)exp [-v.'@-dldT 
“:I i, 

- j, l”, jd? exp [ -Y.” (t - 41 dr} Xi. (x) 

0 

+ &(x) T,(t) + L,*(x) T2V) 

xi < x $ xi+ 1, i = 1.2, 3, , k, t>O 

where 

q,(t) = ; ,i "j-xcQ,(x, t) X,,(x) dx, n = 1,2, 3,. 
nt-, X, 

n = 1,2,3,.. ,j = 1,2 

N, = 5 p&x’{ x’[X,,JX)]~ dx, n = 1,2. 3,. 
i= 1 .y 

This solution gives the temperature distribution in any 

of the k plates, cylinders or spheres, that are joined at their 

k-l interfaces, in terms of the two unknown temperature 

distributions T,(t) and T2(t); thus, the problem is now reduced 

to the determination of these unknown temperature dis- 

tributions in terms of known internal conditions. 
(3) 

TEMPERATURE SPECIFIED AT TWO LOCATIONS 

(4) 

Consider the problem where the temperature distribution 

is known at two different locations within the composite. 

If the known temperature distributions are given by 

Tp(xlp, t), 1 < P 6 k, and T,(xzn, t), 1 < R 4 k. where 

P may equal R but xIp # xzR then equation (3) evaluated 

at xIp and xZR will have the following form: 

(5) Tp(xlp. t) = is, exp C-Y: t) + [ ~(4 exp [ -rf (t-41 d7 

- I,, j T;(r)exp [-y.‘(t - r)] dr - I,, 
0 

(6) x i T;(r) exp [ -r.i (t - z)l dr} {X,(x,,)} 
0 

(7) + &,(x,p) T(t) + &,(x,,) Tzft) 00) 

Xi”(X) = A&,(x) + B,Ni,b), 

n = 1,2,3, , i = 1,2, , k (8) 

&,4x) = Aij 6(x) + Bij (9) 

where the functions MJx), NJx) and e(x) are given in 

Table 1 for plates (c = 0), cylinders (c = l), and spheres 

(c = 2). 

Table 1 

Geometry M,,(x) Ni.(x) e(x) 

Plate (c = 0) cos($x) sin($x) x 

Cylinder (c = 1) JO($x) &($x) Inx 

Sphere(c = 2) 

___- 

tcos($x) l/x 

The coefficients A,, B, for i = 1,2,. , k, n = 1,2,3,. , 
the coefficients A, B, for i = 1,2,. , k, j = 1,2 and the 

eigenvalues y,,, n = 1,2,3,. which are given in equations 

(3)_(9) are obtained in a straightforward manner and are 

given in detail in [3,4]. 
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and 

T&G., t) = Ii (9. exp 
“=I 

- 4, j T;(r) exp [ -1 
cl 

SHORTER COMMUNICATIONS 

2 ynt - 1 +exp(-Yit) 

-y.‘t)+ j4.(‘)exp[-y:(r--?)]dr 

K,(x, t) = &x) - f l,j 
n=1 Y.’ 

0 x X,(x), j = 1,2 (19) 

(t - r,] dr - 1,, and where Xi.(x) is defined by equation (8). 

In equations (14) and (15). the functions H(x, t), KjA(x. t), 

x 5 W) exp L-d 0 - 41 d7) {X,,(x,,)} 
0 

+ L(Xm) T,(t) + L&m) T,(t). (11) 

In equations (10) and (1 l), we have two equations for the 

two unknown quantities T1(t) and TJt) but due to the form 

of these equations an approximate solution must be used. A 

good approximation for the surface temperature distribu- 

lions can be obtained from a careful examination of the 

data since the time dependent portion of the solution should 

have the same general form for the interior as for the 

boundaries. This criterion is employed to select an appro- 

priate analytical function for these distributions. To illus- 

trate, assume that the temperature distributions can be 

expressed as polynomials of second degree. Thus 

T,(t) = A, + B,t + y (12) 

and 

TZ(t) = A, + B2t + y. (13) 

Substitution of equations (12) and (13) into equations (10) 

and (11) results in the following equations 

TP(x~P. 0 - Wx,,, t) = A,K,,(x,,, t) + B,K,,(x,,, t) 

+ C,K,&,p. t) + A,K,,(x,,, 0 + B,K,,(x,,, t) 

+ C,K,c(x,,> t) (14) 

T&R. t) - Mx,,, 0 = A,K,,(x,,, 0 + B,K,,(x,,, 0 

+ C,K,&R, 0 + A,K,,,(x,,. t) + B,K,,(x,,, 0 

+ C,K,&,,. 0 

where 

H(x, t) = 1 Ts. exp C-r. t) 
n= 1 

f 
+ A q.(T) exp L-r.’ U - r)l dr) X,,(x) 

K,,,(x, 0 = &W, j= 1.2 

Kjdx, t) = &,Xx) - f 1-j 
1 - exp(-Y,2 t) 

2 
n=l Y. > 

(15) 

(16) 

(17) 

(18) 

KjB(x, t) and K,,(x, t) are known functions of the space 

coordinates and time while the coefficients A,, B,, C,, A,, 

B, and C, must be determined. The particular method for 

obtaining these coefficients will depend on the particular 

problem but as a general illustration consider the situation 

where the temperature history at points xlp and xLR are 

given. 

If three values of time are chosen, e.g. t = 0, tA and t, then 

a system of six simultaneous non-homogeneous equations 

will be obtained which can be solved to obtain the values of 

the six coefficients. A check on the accuracy of the solutions 

can be obtained by substituting the six coefficients into 

equations (14) and (15) and using these values to calculate 

Tp(xlp, t) and G(xZRI t) at values of time other than 0, t, 
and t, and then comparing these values with the known 

values. If greater accuracy is desired then the intervals 

between 0 and ta and between t, and t, can be subdivided 

such that separate solutions are obtained for each interval 

and these solutions are again compared with the known 

values. The procedure continues in this manner until the 

desired accuracy is obtained. 

TEMPERATURE AND HEAT FLUX SPECIFIED 
AT SINGLE LOCATION 

For this case, it is assumed that the temperature history 

T,(x,. t), 1 < s < k and the heat flux per unit area, 

-K, aT,(x,, t)lc3.x, are known at some position x, in the 

sth layer. Under these conditions, equation (3) and its 

derivative will have the following forms: 

T,(x,, 0 = H(x,, t) + &Lx,) T,(t) + Wx,) G(t) 

- f I,, fi T;(r) exp L-Y.’ (t - 7)l d7} Xsnbsn) 
n=, II 

- i lnZ ij T;(T) exp L-r.’ (t - z)l d5) XJx..) (20) 
n= I 0 

mx,, 0 - ij _ ~ff(x,, t) I dL(x,) T(t) 
dx = YE] ax dx’ 

+ y T*(t) - f I,, {i T;(r) exp [-y: (t - r)] dz} 
n=, 0 

dX&,,) 
i l,,li T”(r) exp L-Y.’ 0 - 41 d7) 

dx n=l o 

x X,,(x),j = 1,2 
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The equations (20) and (21) can now be solved for the 

unknown temperature distribution in the same manner as 

before. The results when substituted into equation (3) will 

give the temperature distribution at any position within the 

composite. 

EXAMPLE 

Consider a two layered composite composed of 40 per 

cent nickel steel and copper. The property values for each 

layer are 

0 <r < 15.2cm 15.2 < x < 30.5cm 

p, = 8169.5 kg/m3 p2 = 8954.4 kg/m3 

K, = 10.38 W/mK K, = 385.79 WlmK 

C,, = 460.46 J/kg K C,, = 383.02 J/kg K 

0: = 0.01 rn’ih 05 = 0.404 m’/h. 

It will be assumed that the initial temperature distribution 

is known to be zero while the temperature distrlbution at 

x = 12.2 cm and x = 18.3 cm is known. Proceeding in the 

same manner as outlined previously, we obtain 

XIn(.u) = sin (l@O Ym x) 

X,,(x) = A,, cos (1.57 y. x) + B,, sin (1.57 y. x) 

A,, = 
sin (1.52 y.) sin (0.478 y,) 

sin (0.239 1;“) 

B 
Z” 

= sin (1.52 y.) cos .0.478 y.) 

sin (0.239 y.) 

L,,(x) = 1 - 0.064x, L, 2(x) = 0.064 x 

L,,(x) = 0.00172(30,5 - x). &2(x) = l 

+0~00172(x 

9. = 0, 4. = 0 

- 305) 

+ Cz[0.3895 t2 - 2 I,,E,,X,,(12.2)] (22) 
n= I 

and 

T,(18.3, t) = 0.021 A, + B[O.021 t 

-c, I,, E,,X,,( 18.3)] + c, [O.Ol t 2 

- f 1,1Ez.XL,(18,3)] + 0.979 A, 
n= I 

+ Bl[0.979 t - f I,,E,,X,,(18.3)] 
“= L 

+ C,[O.4895 t2 - f In2 E,,X,,(18.3)] (23) 
n= 1 

where 

X,,(12.2) = sin(1.216~“) 

X,,( 18.3) = A,, cos (0.287 y,) + B,, sin (0.287 y.) 

E,, = 
1 - exp(-y,2 t) 

Y2 I 

E _dt-l+exp(-Y,2t) 
2” - 4 

Y. 

When the known values of T,(12.2, t) and T,(17.3, t) are 

substituted into equations (22) and (23) and the previously 

mentioned procedure is employed, the values of the co- 

efficients A,, B,, C,, AZ, B,, C, are obtained. Figure 1 

compares the exact values of the temperature distribution) 

at the boundaries and the values obtained by means of the 

approximation. 

Substitution of the known coefficients into equations (12) 

and (13) and then using these results in equation (3) gives 

the equation for the temperature within the composite as a 

41 = 
18.457 sm (0.239 7.) 

14.025 y. sin (0.239 y,) + 12.?875 2’. sin (1.52 y2 

and 

42 = 
106.9 sin (1.52 y.) sin (0.239 y.) 

14.025 y. sin’ (0.239 y.) + 12.7875 y. sin’ (1.52 y_) 

Equations (22) and (23) become 

T,(12.2, t) = 0.221 A, + B, rO.221 t 

- f I”,E,,X,,(122)] + C,[O1105 tZ 
n= 1 

- f I,,E,,X,, (12.2)] + 0.779 A, 
n=, 

+ B,[0.779 t - f 1,1E,,X,,(12.2)] 
n= I 

function of position and time. This equation is 

T(x. t) = A, + B,t + y 
1 

L,,(x) 

+ C* 
A, + B,t + - tZ 

2 1 I&x) 

- i,{f, lnjB,[’ - “‘;‘-” ‘)I+ ; 



1060 SHORTER COMMUNICATIONS 

v.’ - 1 + exp(-y: t) 

Pi! 
(24) 

60 r 

Calculated boundary ccmdhons 
Actual boundary condhons 

FIG. 1. Surface temperatures. 

SUMMARY AND CONCLUSIONS 

A method is presented which enables one to predict the 

internal and external thermal history of a composite 

composed of k discrete layers from specified internal 

conditions. The internal values can be either a temperature 

distribution or a temperature gradient and can be specified 

at separate points or at the same location within the solid. 

The accuracy of the analysis technique is well illustrated by 

the example where comparisons are made between the 

analytically generated experimental data and the tempera- 

tures obtained using the present method. 
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